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U Examples of Applications

Virtual Assembly Simulation

Virtual Ergonomics Investigation
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W Other Uses of Collision Detection §

Rendering of force feedback Robotics: path planning Medical training simulators
(piano mover's problem)
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Y How Would You Approach the Problem of Coll.Det.? "

https://www.menti.com/f1b5t74e21
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Bremen

U Definitions

e Given P,Q C R’

The detection problem:
“P and Q collide” <

PNQ +# 92 <
Ixed:xePAxe@

* The construction problem:
compute R:=PNQ

* For polygonal objects we define collisions as follows: P and Q collide iff
there is (at least) one face of P and one of Q that intersect each other

* The games community often has a different definition of "collision"
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Classes of Objects

e Convex

* Closed and simple
(no self-penetrations)

* Polygon soups
* Not necessarily closed
* Duplicate polygons
* Coplanar polygons
* Self-penetrations
e Degenerate cardigans

e Holes

e Deformable
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Bremen

Y Importance of the Performance of Collision Detection S

Clever algorithm (use bbox hierarchy) Naive algorithm (test all pairs of polygons)

Conclusion: the performance of the algorithm for collision detection
determines (often) the overall performance of the simulation!

In many simulations, the coll.det. part takes 60-90 % of the overall time
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Y Why is Collision Detection so Hard?

1. All-pairs weakness:

,4%
AT
PRAIRLEGN
s
e
SNSRI K

e

2. Discrete time steps:

3. Efficient computation
of proximity / penetration:
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U Requirements on Collision Detection

* Handle a large class of objects
* Lots of moving objects (1000s in some cases)

* Very high performance, so that a physically-based simulation can do many
iterations per frame (at least 2x 100,000 polygons in <1 millisec)

e Return a contact point ("witness") in case of collision
* Optionally: return all intersection points

* Auxiliary data structures should not be too large (<2x memory usage of
original data)

* Preprocessing for these auxiliary data structures should not take too long, so that
it can be done at startup time (< 5sec / object)
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Bremen ‘J -
Y Another Problem Related to Collision Detection 5‘--5:%

* Physics consistency (or inconsistency): small changes in the starting
conditions can result in big changes in the outcomes

GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 ".‘ I 4

2nd time, the ball has
been moved slightly

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 1



Bremen &J §
@ Explanation by Way of Example -

Frame t+0 Frame t+1 Frame t+2 Frame t+3

Run 2 (ball has been moved slightly)
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Y oOne Way of Alleviation: Faster Coll.Det. — Faster Frame Rate Lf--sgg

GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 \\.. . _‘/

Same experiment: 2nd time, the ball has been moved slightly, but frame rate is much higher now
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W Collision Detection Within Simulations

* Main loop:
Move objects
Check collisions

Handle collisions (e.g., compute penalty forces)

* Collisions pose two different problems:

1. Collision detection

2. Collision handling (e.g., physically-based simulation, or visualization)

* |n this chapter: only collision detection

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Y Achieving a Fixed Framerate for Rendering and Simulation *::

Bremen . -
3 %

t = accumulator = 0; A4t = 0.001; // time in seconds

0ldTime = currentHighresTimer ()

repeat
render scene with current state // try to use LOD's etc.
check collisions with current positions // large time variability

— new forces
// calc delta-t since last frame
newTime = currentHighresTimer ()
frameTime = newTime - oldTime
0l1ldTime = newTime
// advance physics sim. in small steps to current time

accumulator += frameTime
while accumulator >= At:

integrate( state, t, A4t )
accumulator -= At; t += At
until quit
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Terminology: Continuous / Discrete Collision Detection

e Discrete coll.det.: compute penetration measure (or just yes/no) for "static"
objects at the current pointin time

* Continuous coll.det.: find exact point in time where first contact occurs

e Usually, this assumes that objects between frames move/rotate linearly
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Y The Difficulties of Continuous Coll.Det.

%)
..
AR N N

<N

* Finding the exact, first contact of polygons
moving in space amounts to checking several
cases

\

vertex/face edge/edge

» Each case needs to consider 4 points
* Each of those points is a linear function in t

* Necessary condition for hit: all 4 points lie in a
plane at some point in time

* Amounts to solving a polynomial of degree 5!

e Swept volumes (aka. space-time volumes) can
help to determine potentially colliding pairs

e But difficult to calculate

* Many false positives
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@ The Collision Detection Pipeline

. C
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L o

(Application ] § £ (Scene Graph) Collision Collision
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U The Collision Interest Matrix

* Interest in collisions is specific to different applications / objects:
* Not all modules in an application are interested in all possible collisions
* Some pairs of objects collide all the time, some can never collide

* Goal: prevent unnecessary collision tests

e Solution: Collision Interest Matrix

X
x
x
X X X Né&

* Elements in this matrix comprise:
* Flag for collision detection

» Additional info that needs to be stored from
frame to frame for each pair for incremental
algorithms ( e.g., the separating plane)

X
X X X X | X X X [Nes

o N o o &~ O N =
X
X

 Callbacks to the simulation / coll. handling
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19

e



Bremen

)

Methods for the Broad Phase

* Broad phase = one or more filtering steps

* Goal: quickly filter pairs of objects that cannot intersect because they are too far
away from each other

* Standard approach:

* Enclose each object within a bounding box (bbox)

* Compare the 2 bboxes for a given pair of objects
* Assumption: n objects are moving
> Brute-force method needs to compare O(n2) many pairs of bboxes

e Goal: determine neighbors more efficiently

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Y The 3D Grid g

1. Partition the "universe" by a 3D grid C—\D

2. Objects are considered neighbors, if they occupy the same
cell

3. Determine cell occupancy by bbox

)

>
¢
-

4. When objects move — update grid SEET R
* Neighbor-finding = find all cells that contain more than one 0 \\J
obj

e Data structure here: hash table (!)
e Collision in hash table — potentially colliding pair
* The trade-off:
* Fewer cells = larger cells — distant objects are still "neighbors"

* More cells = smaller cells — objects occupy more cells, effort
for updating increases # cells along

. . . hd. .
* Rule of thumb: cell size = avg obj diameter each dimension

Total time

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 21
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Y

The Plane Sweep Technique (aka Sweep and Prune)

* The idea: sweep a plane through space,
perpendicular to the X axis

* Solve the problem on that plane
* The algorithm:

sort the x coordinates of all boxes
start with the leftmost box
keep a list of active boxes
loop over x-coords (= left/right box borders) :
if current box border is the left side (= "opening"):
check this box against all boxes in the active list
add this box to the list of active boxes
else (= "closing"):

remove this box from the list of active boxes

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024
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Temporal Coherence

Observation:

Two consecutive images in a sequence differ only by very little (usually).
Terminology: temporal coherence (a.k.a. frame-to-frame coherence)

Algorithms based on frame-to-frame coherence are called “incremental”,
sometimes “dynamic” or “online” (albeit the latter is the wrong term)

Examples:

* Motion of a camera

* Motion of objects in a film / animation

Applications:

e Computer Vision (e.g. tracking of markers)

* Video compression

 Collision detection

e Ray-tracing of animations (e.g. using kinetic data structures)
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Bremen

Y Do You Know Examples/Applications of Frame-to-Frame Coherence?

https://www.menti.com/f1b5t74e21
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Y Collision Detection for Convex Objects

* Definition of “convex polyhedron”:
P C R® convex <
Vx,y e P:xy C P&

P = H; , H; = half-spaces

e A condition for "non-collision":
P and Q are "linearly separable" :&

J half-space H: PCH AQC H :&

3h€R4Vp€Pq€Q ( )h>0/\( 1)h<0 Separating plane H

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 25
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Y The "Separating Planes" Algorithm

* The idea: utilize temporal coherence —
if E; was a separating plane between P and Q at time t, then the new

separating plane Hy, is probably not very "far" from H; (perhaps it is even
the same)

Ht+1 \

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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load Ht = separating plane between P & Q at time t H,
H := Ht
repeat max n times

if exists v € vertices(P) on the back side of H:

rot./transl. H such that v is now on the front side of H
if exists v € vertices()) on the front side of H:
rot./transl. H such that v is now on the back side of H
if there are no vertices on the "wrong" side of H, resp.: \
return "no collision"
if there are still vertices on the "wrong" side of H:
return "collision" {could be wrong}

save Ht+l := H for the next frame

Hes1 \
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Y How to Find a Vertex on the "Wrong" Side Quickly 9

e The brute-force method:
test all vertices v whether f(v) = (v—p)-n >0

e Observation:

1. fis linearin vy, vy, v,

2. P is convex = f(x) has (usually) exactly one minimum
over all points x on the surface of P, consequently ..

3.3 ¢ f(v) = min

* The algorithm (steepest descent on the surface wrt. f):
 Start with an arbitrary vertex v
 Walk to that neighbor v’ of v for which f(v’) = min. (among all neighbors)

e Stop if there is no neighbor v’ of v for which f(v') < f(v)

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 28
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@ Updating the Candidate Plane, H

* |n the following, represent all vertices p as (p, 1), i.e., use homogeneous coords
e We want h, suchthat Vpe P:h-p>0and Vge P:h-gq< 0
* Let P C P be the "offending" points for a given plane h, i.e. Vp € P:hp<0

* Define a cost function ¢ = c(h) = — > _sh-p
* Change h so as to drive ¢ down towards O J
e Gradient descent: change h by negative gradient of ¢, i.e. h' = h — %C(h)
° . . . i _ _
Costfctcis linearinh,so S.c=—) 5P

* Therefore, Y =h+n Zpeﬁ p , with 5 ="learning speed" (usually 7 « 1)
* In practice, one decelerates, i.e., ' = 0.97n after each iteration, prevents cycling

* (For object Q, some signs need to be changed)

* G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 29
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i

*

® Perceptron Learning Rule (has been known in machine learning for a long time).
whenever we find p € P with h-p < 0, update husingh’ =h+np .
(Analog for Q, with some signs reversed.)

* Theorem:
If P, Q are linearly separable, then repeated application of the perceptron
learning rule will terminate after a finite number of steps.

* Corollary:
If P, Q are linearly separable, then the algorithm will find a separating plane
in a finite number of steps.

(When algo terminates, none of P, Q's vertices are on the wrong side. l.e.,
each step brings H closer to the solution.)

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Proof of the Theorem a3

* Let h* be a separating plane, w.l.og. ||h*|| = 1
e Thereisad,suchthat Vpe P:h*p>d >0, Vge Q@ :h*q< —-d <0
e Such avalue d is called the "margin" of h*

* Assume further h* is optimal w.r.t. the margin d (i.e., has the largest margin)

let V=PU{—ql|qec Q}

® Thus, P, Qs linearly separable <

VpeP:hp>0AVgeQQ:hg<0 & VveV: :hv>0

* G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 31
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*

Let v € V' be an "offending" vertex in k-th iteration

After k iterations, h* = h* 1 v =h*2 4+ + v =...=1n> ., kV
where k, = #iterations in which v was the offending vertex
Consider h*hk:

h*-h* =h*-(n) kv)=n) kh*v>nd» k, =ndk

veV veV veV

Now, we use a trick to find a lower bound on |h¥| :

W42 = [ 052 = [Jh*-h¥[[2 = n2d2K?

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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* Now, find an upper bound

Let D = max{ ||v| }
veV

e Consider one iteration:

L e 1 e 1 s /T e | e
= [[W*HJ" + 2ph* v+ (v)? — W3

< 0+ n°D?

* Taking this over k iterations:

G. Zachmann

[n¥[|* < kn*D? + [|h°||7

Virtual Reality and Physically-Based Simulation WS  Januar y 2024 Collision Detection
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*

e Putting lower and upper bound together gives:
7,}2de2 S HthQ S k??2D2

* Solving for k:

* |n other words, the factor 5_22 gives a hint at how difficult the problem is

(except, we don't know d or D in advance)

* To some extent, % is measures the "difficulty" of the problem
G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Properties of this Algorithm

+ Expected running time is in O(1)!
The algo exploits frame-to-frame coherence:
if the objects move only very little, then the algo just checks whether the old
separating plane is still a separating plane;
if the separating plane has to be moved, then the algo is often finished after
a few iterations.

+ Works even for deformable objects, so long as they stay convex
— Works only for convex objects

— Could return the wrong answer if P and Q are extremely close but not
intersecting (bias)

* Research question: can you find an un-biased (deterministic) variant?

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Visualization
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Y Closest Feature Tracking Optional

* |dea:
e Maintain the minimal distance between a pair of objects
* Which is realized by one point on the surface of each object

* If the objects move continuously, then those points move continuously on the
surface of their objects

* The algorithm is based on the following methods:
* Voronoi diagrams

e The “closest features” lemma

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Y Voronoi Diagrams for Point Sets Optional

Given a set of points S = tulled sites (or generators)

Definition of a Voronoi region/cell :
V(p/) = {p S R2 | \V/_/ # I Hp T pIH < Hp o pJH} Voronoi

region
Definition of Voronoi diagrams: wrt. pi
The Voronoi diagram VD(3)
over a set of points S is
the union of all Voronoi regions

over the points in S.
VD(S)
induces a partition of the

plane into Voronoi edges,
Voronoi nodes, and Voronoi regions

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Optional
Y Voronoi Diagrams over Sets of Points, Edges, Polygons

* Voronoi diagrams can be defined analogously in 3D (and higher
dimensions)

* What if the generators are not points but edges / polygons?

e Definition of a Voronoi cell is still the same:

The Voronoi region of an edge/polygon := all points in space that are closer
to "their" generator than to any other

. N Il Voronoi region
° Example in 2D: N 7 induced by an edge
\\ R /
Voronoi region N
induced by A ne
a vertex S\ .7

_ ) O .
y 7 Voronoi generators
y >
/ \
4
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tional

0
Y  Outer Voronoi Regions Generated by a Polyhedron

The external
Voronoi regions of ...

) faces

() edges

(© asingle edge
(d) vertices

Outer Voronoi
regions for convex
polyhedra can be
constructed very
easily!

(We won't need inner
Voronoi regions.)

(©)
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U Closest Features Optional

* Definition Feature fP := a vertex, edge, polygon of polyhedron P.

e Definition "Closest Feature":
Let P and fQ be two features on polyhedra P and Q, resp., and let p, g be

points on f” and fQ, resp., that realize the minimal distance between P and

Q, i.e.
d(P,Q)=d (", %) =|lp—adl

Then P and R are called "closest features".

* The "closest feature" lemma: fQ\
Let V(f) denote the Voronoi region
generated by feature f; let p and g be
points on the surface of P and Q realizing

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Y Example Optional %

<Tg

“+
7 N
-7 (IR Q
4 </ I
(]
‘
S l| || \ :
S AN :
1
/ II 1 \ :
L] 1 \
A A |
’ I’ ! N
/ 1 | \{
’ ] 1
,/ [ \ I
1
S | ! q = fQ (a vertex)
’ L e e————— R <RS-
i ]
4 1
4 1
/, ,I
/s !
(——— === - L= ___
\ II e
\ N .
s =" (an edge)
A p =f" (an edge
\ A L7
1 7’
\ Il,/ r //, _—”
e I e -7
1 7’ -
1 // "”
1 // ”/
1 s _-"
v
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e . Optional Jd i
Y The Algorithm (Another Kind of a Steepest Descent)

Start with two arbitrary features fP, fQ on P and Q, resp.
while (f?, fQ) are not (yet) closest features and dist(f?,fQ) > 0 :

if (fP,fQ) has been considered already:
return “collision” (b/c we've hit a cycle)

compute p and g that realize the distance between f? and fQ
if pEV(g) und g€ V(p):

return “no collision”, (f?,fQ) are the closest features
if p lies on the "wrong" side of V(q) :

fP := the feature on that "other side" of V(q)

Notice: in case of collision, some features are

do the same for g, if q & V(p) inside the other object, but we did not

. ] b compute Voronoi regions inside objects!
if dISt( f ’ fQ ) >0: — hence the chance for cycles

c.zzcomanpr@turn " No el siondiy-sased simulation WS January 2024 Collision Detection 43
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Y

Animation of the Algorithm

Optional

G. Zachmann Virtual Reality and Physically-Based Simulation
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Y  some Remarks Optional 9

* Alittle question to make you think: actually, we don't really need the
Voronoi diagram! (but with a Voronoi diagram, the algorithm is faster)

* The running time (in each frame) depends on the "degree" of temporal
coherence

* Better initialization by using a lookup table:
* Partition a surrounding sphere by a grid

* Put each feature in each grid cell that it
covers when projected onto the sphere

e Connect the two centers of a pair of objets
by a line segment

* Initialize the algorithm by the features hit by that line

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 45



Bremen

)

Movie
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Bremen

e Hermann Minkowski (1864 — 1909), German mathematician

e Definition (Minkowski Sum):
Let A and B be subsets of a vector space;
the Minkowski sum of A and B is defined as

AdB={a+blacA beB}

* Analogously, we define the Minkowski difference:
AcB={a—blacA becB}

* Clearly, the connection between Minkowski sum and difference:
AcB=A&(-B)

* Applications: computer graphics, computer vision, linear optimization, path
planning in robotics, ...

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 47
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Y Some Simple Properties

e Commutative: ADB=B®dA
* Associative: Ae(Ba(C)=(ApB)a C

* Distributive w.r.t. set union: A¢ (BU C)

(A B)U(A® C)

* |nvariant against translation: T(A)@B=T(A¢ B)

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024
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* [ntuitive "computation" of the
Minkowski sum/difference:

Warning: the yellow polygon in the
animation shows the Minkowsi sum
modulo(!) possible translations!

* Analogous construction of
Minkowski difference:

ASB =A®-B = /e&
N

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 49
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Y What Objects Were the Original Constituents of this Minkowski Sum?

Don't spoil it by
"look-ahead" in
the slides!

J

https://www.menti.com/f1b5t74e21
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Y  Vvisualizations of Simple Examples

Minkowski sum of a ball and a cube

G. Zachmann Virtual Reality and Physically-Based Simulation WS

January 2024

Collision Detection
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Y

Minkowski sum of cube and
cone, only the cone is

rotating

Minkowski sum of cube and

cone, both are translating

G. Zachmann
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Y The Complexity of the Minkowski Sum (in 2D, without proofs) ‘

* Let A and B be polygons with n and m vertices, resp.:
* If both A and B are convex, then A& B is convex, too, and has complexity O(m + n)
* If only B is convex, then A @ B has complexity
* If neither is convex, then A @ B has complexity
* Algorithmic complexity of the computation of A® B
e If Aand B are convex, then A® B can be computed in time

 If only Bis convex, then A@ B can be computed in
randomized time

e If neither is convex, then A® B can be computed in time
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Y  an Intersection Test for Two Convex Objects using Minkowski Sums -

* Compute the Minkowski difference

* AandBintersecte 0 € A& B

]
S \

AeB =A®-B=C

* Example where an intersection
OCcCurs:
1(_/' T_
Used in several algorithms, such as )
Gilbert-Johnson-Keerthi (GJK)
[see video on the course homepage] AeB=A®-B=C
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W Hierarchical Collision Detection

* The standard approach for "polygon soups"

e Algorithmic technique:
divide & conquer

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 55
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Y The Bounding Volume Hierarchy (BVH) g,

* Constructive definition of a bounding volume hierarchy:

1. Enclose all polygons, P, in a bounding volume BV(P)

B
2. Partition P into subsets P4, ..., P, / \ \

3. Recursively construct a BVH for each P; B, B, B;
and put them as children of P in the tree /1N /N
Bi1 B12 Bys B>  Bs;
* Typical arity =2 or 4
B;
* Nodes store BV
and pointer
to children
B
B B>

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection 56
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Y visualizations of Different Levels of Some BVH:s

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024
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Y The General Hierarchical Collision Detection Algo

)
..
AR N N

<N
L1

A 1
Simultaneous traversal of two BVHs B C 2 3
traverse( node X, node Y ): //
if X,Y do not overlap: D E Fl [G 4 5 6l [7

return
if X,Y are leaves:
check polygons
else
for all children pairs:

traverse( X;, Y5 )

Resulting, conceptual(!) Bounding Volume Test Tree (BVTT)
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Y A Simple Running Time Estimation S

Path through the

e Best-case: Bounding Volume
O (|Og n) Test Tree (BVTT)

* Extremely simple average-case estimation:

e Let P[k] = probability that exactly k children pairs overlap, k € [O,...,4]

1

PIK] = (:)/16, PIO] =

* Assumption: all events are equally likely, each subtree has %2 of the polygons

* Expected running time:
T(n) =160+ 16 T(3) + 152T(3) + 16-3T(5) + 5547 (3)
T(n)=2T(%) € O(n)
* |n practice: running time is better/worse depending on degree of overlap
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i

Relationship Between the Type of BV and Running Time

* |n case of rigid collision detection (BVH construction can be neglected):

T =NyCy + NpCp

Ny = number of BV overlap tests

Cy = cost of one BV overlap test

Np = number of intersection tests of primitives (e.qg., triangles)
Cp = cost of one intersection test of two primitives

* |n case of deformable objects (BVH must be updated):

T =NyCy+ NpCp+ NyCy
Ny / Cy = number/cost of a BV update

* As the type of BV gets tighter, Ny (and, to some degree, Np) decreases, but
Cy and (usually) Cy increases

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Y Requirements on BV's (for Collision Detection) S

* Very fast overlap test — "simple BVs", even if BV's have been translated/
rotated!

* Little overlap among BVs on the same level in a BVH (i.e., if you want to

cover the whole space with the BVs, there should be as little overlap as
possible) — "tight BVs"
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U Which Types of BV's Come to Your Mind?

Don't spoil it by
"look-ahead" in

the slides!
Y,

https://www.menti.com/f1b5t74e21
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U Different Types of Bounding Volumes

%

Cylinder
[Weghorst et al., 1985]

N

Prism
[Barequet, et al., 1996]

.

.

s

‘ 3 0
o S
&, SN
.

Sphere
[Hubbard, 1996]

k-DOP / Slabs
[Zachmann, 1998]

Spherical shell
[Manocha, 1997]

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024

AABB (Axis-aligned bounding box)
(R*-trees) [Beckmann, Kriegel, et al., 1990]

%

Convex hull
[Lin et. al., 2001]

5

OBB (oriented bounding box)
[Gottschalk, et al., 1996]

%

Intersection of
several BVs

Collision Detection
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Bremen

Y The Wheel of Re-Invention ‘

* OBB-Trees: have been proposed already in 1981 by Dana Ballard for
bounding 2D curves, except they called it "strip trees"

* AABB hierarchies: have been invented (re-invented?) in the 80's in the spatial
data bases community, except they call them "R-tree", or "R*-tree", or "X-
tree", etc.
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Y Digression: the Wheel of Fortune (Rad der Fortuna)

4
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~F k.

Y The Intersection Test for Oriented Bounding Boxes (OBB) "«

* The "separating plane" lemma (aka. "separating axis" lemma):
Two convex polyhedra A and B do not overlap <
there is an axis (line) in space so that the projections of A and B
onto that axis do not overlap.
This axis is called the separating axis.

* Lemma "Separating Axis Test" (SAT):
Let A and B be two convex 3D polyhedra.
If there is a separating plane, then there is also a separating
plane that is either parallel to one side of A, or parallel to one

side of B, or parallel to one edge of A and one edge of B
simultaneously.
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Y Proof of the SAT Lemma

e ‘4\"
.
<n
oo
RN

1. Assumption: A and B are disjoint

2. Consider the Minkowski sum C = AS B

3. All faces of C are either parallel to one face of A, or to

one face of B, or to one edge of A and one of B (the

latter cannot be seen in 2D)
4. Cis convex
5. Therefore: C =N, H
6. Weknow: ANB=0<0&C
7. B/c of assumption, 3i: 0 ¢ H (i.e., O is outside H;)

0

8. That H; defines the separating plane; the line

perpendicular to H; is the separating axis
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Y Computing the SAT for OBBs

Compute everything in the coordinate frame of OBB A (wlog.)

* Ais defined by: center ¢, axes A1, A2, A3, and extents a', a2, a3, resp.

B's position relative to A
is defined by rot. R and transl. T

In the coord. frame of A:
Bi are the columns of matrix R

Let L be a line in space;
then A and B overlap,
it |T-Ll<r,+r,

e Reminder: L = normal to the separating plane

SAT lemma — we need to check only a few special lines (15 in case of OBB's)

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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.

Y FYl (not relevant for exam) B

" e
- .

° Example: [ = A x B2
e We need to compute: r, = Z ailA"- L (and similarly rg)

* Forinstance, the 2nd term of the sum is:

aA® - (A'XxB?)
= 2,B° - (A°xAY)

2
= 2B% - A’ Since we compute everything
= axR3 in A's coord. frame
— A3 is 3rd unit vector, and

B2 is 2ns column of R

* |In general, we have one test of the following form for each of the 15 axes:
‘T . L| < 32|R32| —+ 33|R22| —+ b1|R13‘ —+ b3|R11
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U Discretely Oriented Polytopes (k-DOPs) .

e Definition of k-DOPs:

b

Choose k fixed vectors b; € R*, with k even, b, '3 b
2

and b,‘ = - b,‘+k/2 . >< /
We call these vectors generating vectors bs b,
(or just generators). ><>\
A k-DOP is a volume defined by b , bg

b;

the intersection of k half-spaces:

D:mH, , H,'Zb,"X—d,'SO
i=1..k

* A k-DOP is completely described by d = (di, ..., di) € R*
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)

* The overlap test for two (axis-aligned) k-DOPs:

i

D'ND? =2 <
k

=1 |dhd |0 |dd,] =2

2

l.e., itis just k/2 interval tests

* Note: this is just a generalization of the simple
AABB overlap test

G. Zachmann
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Y

* Computation of a k-DOP, given a polygon soup with vertices V-
¢ VZ{V(),...,V,,}
o D= (d;...d¢) € R¥

* Foreachi=1, .., k, compute di = max;—

D)
«

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Y

Some Properties of k-DOPs

* AABBs are special 6-DOPs
e The overlap test takes time € O(k), k = number of orientations

* With growing k, the convex hull can be approximated arbitrarily precise

k=26

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Y The Overlap Test for Rotated k-DOPs FYI (not relevant for exa‘?mﬁ

* The idea: enclose an "oriented" DOP by a new axis-aligned one:
* The object's orientation is given by rotation R & translation T

e The axis-aligned DOP D' = (d'y, ..., d'x) can be computed as follows (w/o proof):

N

CJ/ d'i
1 )1
/— - .. l.
d; =|b; | c; di | +biT)
C.i d-i ¢

\ 3/ J N3

d

with Cj = bjR_l

e The correspondence j; is identical for all DOPs in the same hierarchy (thus, it can
be precomputed, and the red terms, too)

e Complexity: O(k) [Compare this to a SAT-based overlap test]
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U Restricted Boxtrees (a Variant of kd-Trees) g

* Restricted Boxtrees are a combination of kd- Sp“t“r‘/g P\'a”es

trees and AABB trees:

* For defining the children of a node B:
for the left child, split off a portion of the
"right" part of the box B — "lower child";
for the right child of B, split off a portion of
the left part of B — "upper child"

lower child upper child

C

* Memory usage: 1 float, 1 axis ID, 1 pointer
(= 9 bytes), can fit into 8 bytes

* Other names for the same thing:

* Bounding Interval Hierarchy (BIH)
e Spatial kd-tree (SKD-Tree)

[Zachmann, 2002]
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Y Just FYI .

* Overlap tests by "re-alignment" (i.e., enclosing the non-axis-aligned box in
an axis-aligned one, exploiting the special structure of restricted boxtrees):

12 FLOPs (8.5 with a little trick)

* Compare this to
e SAT: 82 FLOPs
o SAT lite: 24 FLOPs
* Sphere test: 29 FLOPs
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Y Performance

G. Zachmann

time / millisec

1.6

1.2

0.8

0.4

Car (courtesy VW)

DOP tree

Restr. Boxtree

20 40
# pgons / 1000

Virtual Reality and Physically-Based Simulation
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Door lock (BMW)

Restr. Boxtree
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DOP tree
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W Master's Thesis Topics ﬁ"m $ i
Wy Sy
%%Qn\ '

v U,
* |nvestigate the BVH presented in Bauszat et al., "The Minimal Bo T‘%fﬁn X |

Volume Hierarchy" (2 bits per node!): fi{
e Can it be used for coll.det.? e
* Would it be faster than my "Minimal Hierarchical Collision Detection" (2002)?

* How many polygons an the BVH represent and still fit into the L1/L2 cache?

Can the BVH be stored such that proximal parts of the obj are contiguous in
memory (and thus can be loaded in the cache)?

Can it be combined with the SSE/AVX instruction set?
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i

The Construction of BV Hierarchies

* Obviously: if the BVH is bad — collision detection has a bad performance
* The general algorithm for BVH construction: top-down

1. Compute the BV enclosing the set of polygons

2. Partition the set of polygons

3. Recursively compute a BVH for each subset
* The essential question: the splitting criterion?

* Guiding principle: the expected cost for collision detection incurred by a
particular split is

CX.Y)=c+ Y PX.Y)C(X.Y) = (PX, Y1)+ -+ P(X, Y2))

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024 Collision Detection
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Y

* Given: parent boxes X, Y (intersecting)

 Goal: estimation of P(XY))

e Qur tool: the Minkowski sum X4

* Reminder: XiNY, =0 & 0& X;0Y,

* Therefore, the probability is: X, 0 Y,

Vol( “good” cases)

P(X;, Y)) = _
(%, Y) Vol(all possible cases) XoY

_Vol(X;e V)  Vol(X;&Y;) _ Vol(X;) + Vol(Y;)
T Vol(XoY)  Vol(Xa@Y)  Vol(X)+ Vol(Y)

e Conclusion: for a good BVH (in the sense of fast coll.det.), minimize the total
volume of the children of each node
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Y The Algorithm for Constructing a BVH

1. Find good orientation for a "good" . e
splitting plane using PCA . .

2. Find the minimum of the total volume by a
sweep of the splitting plane along that axis .

e Complexity of that plane-sweep algorithm:
T(n)=nlogn+ T(an)+ T((1 —a)n) € O(nlog® n)

* Assumption: splits are not too uneven, i.e., a fraction of a and (1-a) polygons
goes into the left/right subtree, resp., and is a« not "too small"
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Y What Could be a Good Measure of Penetration of Virtual Objects?

Don't spoil it by
"look-ahead" in
the slides!

J

https://www.menti.com/f1b5t74e21
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U Penetration Measures

* Penetration distance
 Various forms
* Suitable for penalty forces generated by
ad-hoc "virtual" springs
* Penetration volume
* Intuitive

* Physically motivated: buoyancy force of
floating objects = vol. of displaced water

e Continuous

 Related to deformation energy of
colliding objects

* Requires representation of inner volume
of objects

G. Zachmann Virtual Reality and Physically-Based Simulation

‘ 5* cG

" VR

In the configuration on the left, the penetration should
be "higher" than in the configuration on the right
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Y Inner Sphere Trees: the Basic Idea ¢

* Challenge: compute proximity, i.e., distance or
measure of penetration

* Approach: don't approximate an object from
the outside; instead, approximate it

* from the inside,

* with non-overlapping spheres, and

* with as little empty volume as possible
> Sphere packing

* Build sphere hierarchy on top of inner spheres

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024

Conceptual
image only!
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Y The Long History of Sphere Packings | ,§

o o . e mm% Vam fi ad  ructuram folidorun
oA ore.  grediovis. ordinesq,ordinibus fip
4 Ey | an'
- I 2 >3 B L
intl SRS Jupt
(% C riol @Q \') ;2;';
: ofe : N
i @ D Z:: #os
pec =) Zan
ohannes Kepler ! ' . .
](1571 _ 163%) g Cfg E f,‘ff,’ . 5 , '“ri Mathematical proof in
Ecece gul vafaprafe,Grabvmoinfiafe:& g9g by Thomas Hales
Paz

and Samuel Ferguson
mecefSitateconcyrrentecun:ra

Kepler's Conjecture V = i ~ 74%

(1611) B V18
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)

‘*J‘

&
o

e Our requirements / variety of sphere packings:

* Non-overlapping

* Arbitrary radii

* Must work for any kind of container (not just boxes)

* Optimization according to some criteria, e.g. number of spheres

e Our approach:

* Find inner Voronoi nodes of container object

* (See course "Computational Geometry for CG")

* In our case, use approximation by iterative algorithm

* Place spheres

e Compute new Voronoi nodes of object plus spheres

G. Zachmann
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Y  Visualization of Our Algorithm

)
- .

Candidate
Voronoi node
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Y

Results

v
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Y The Algorithm can be Parallelized for the GPU

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024
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Y Performance of Construction of Sphere Packing g
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Y  Construction of Hierarchy Over Sphere Packing

* |IST = sphere tree over sphere packing

* Constructions is based on a clustering
method known from machine learning
(batch neural gas clustering)

e Bears some resemblance to k-means, but
more robust against outliers and starting
configuration

* We can assign "importance" to spheres

e Parallelizable on the GPU

* Naturally generalizes to higher tree

degrees (out-degree of 4-8 seems optimal)

G. Zachmann Virtual Reality and Physically-Based Simulation WS  January 2024
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)

e BNG hierarchy construction on CPU has complexity of O(nlogn)

e Parallelization of BNG reduces complexity to O(log? n)

G. Zachmann

35
30 |
20

10 |

Construction time in seconds

CPU

GPU

O T T 1 1 I
0 10 20 30 40 50 60

number of spheres x 1000

Virtual Reality and Physically-Based Simulation

70

WS

80

Geforce GTX 780

90

January 2024

100

Collision Detection

)
- .

¥ cc &

VR

92



Bremen

Y Examples

Clustering underneath root

G. Zachmann Virtual Reality and Physically-Based Simulation

Clustering underneath level 1 nodes

WS  January 2024 Collision Detection
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Y Proximity / Penetration Query Using ISTs .

* Works by the standard simultaneous
traversal of BVHs

* First algo that can compute both minimal ‘
distance or intersection volume with one
unified algorithm

e Can compute forces and torques

* Which can be proven to be continuous
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Y Computation Timings for the Intersection Volume

3.5
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Y

J
Parallel Computation Times for Intersection on GPU Lfé
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Y

Accumulate sphere-sphere
interaction forces:

e Linear force:

blue __ red blue blue
f" = Vol(s;* N s7¢)-n;

fblue _ Z fl_tj_lue

* Torque: e
Tij = (Pij — Cm) X fij
7_blue _ 7__b_Iue

/

Forces/torques an be proven to be
continuous

G. Zachmann Virtual Reality and Physically-Based Simulation

Penalty Forces for Simulation/Force-Feedback

WS  January 2024
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Y Application: Multi-User Haptic Workspace

%&. oo
S

12 moving objects ; 3.5M triangles ; 1 kHz simulation rate ; intersection volume = 1-3 msec
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Y

Application: Bin Packing

G. Zachmann

[MeilRenhelter et al. 2019]
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U Master / Bachelor Thesis Topics fé'

* Perform collision detection using machine learning Z; .
: . *® /

* Use deep learning?, or GLVQ?, something else? ¥4 i”!r

e Can it be donein 1 milliseconds ?! L ~

* For rigid objects first, then deformable, or continuous collision detection
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